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Abstract 

The shape evolution for some selected germanium isotopes have been investigated from calculated 

potential energy surfaces on beta-gamma     plane and analyzed by the single-particle energy 

levels. The Ev8 program with a 3-dimensional Cartesian mesh which solves the Skyrme-Hartree-

Fock+BCS problem is employed. From the     plane, these results are pointed out that 64Ge is 

to be triaxial while both 68Ge (oblate) and 78Ge (prolate) have axially symmetric whereas 82Ge gives 

the spherical nature. The calculated binding energies of all selected nuclei in this work fairly agree 

with experimental data. 
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Introduction 

 One of the major challenges in nuclear physics is to study the nuclear structure of neutron-

rich nuclei far from the beta stability line. For that reason, many researchers are trying to find out 

the valuable observations either experimentally or theoretically. There are about 4000–7000 nuclei 

which are expected to be bound from several theoretical calculations but have not yet been 

discovered experimentally. At present, both experimental results and theoretical calculations 

concluded that most of the deformed nuclei have a quadrupole deformation of the prolate kind 

(cigar-like shape) that preserves to a great extent axial symmetry. Therefore, those regions of the 

nuclide chart showing deformation with axial symmetry or deformed triaxial distributions breaking 

axial symmetry are of great interest to deepen the understanding of the mechanisms underlying the 

appearance of deformation [Robledo, L. M., R. R. Guzman and P. Sarriguren, (2009)].  

 The microscopic models with effective interactions are widely used to investigate the 

properties of nuclei in stable and unstable regions. These can be divided into two different 

approaches; the shell model and self-consistent mean-field models. The shell model plays a main 

role for calculating the ground-state properties and excitations of nuclei with a mean-field 

description which is built from phenomenological single-particle basis wave functions such as the 

harmonic oscillator. However, it cannot explain some observed parities of heavier excited nuclei 

and magnetic moments. In the past decades, the relativistic and non-relativistic self-consistent 

mean-field approaches have been popular to study the structures of nuclei. The self-consistent 

mean-field (SCMF) theory is the only approach that aims closer to a fully microscopic description 

of nuclei that is computationally tractable over the entire mass table, it becomes the successful 

approach to describe and predict the properties of heavy nuclei. Many of these nuclei are located 

in the neutron-rich region and they play an important role in explaining the nucleosynthesis 

mechanism beyond iron. Therefore, it is necessary to gain knowledge of the structures of neutron-

rich nuclei which are quite different from that of stable nuclei.  

 The aim of this present work is to predict the shapes of medium-mass nuclei with 

quadrupole deformation using self-consistent mean field approach. In this work, we chose four 

germanium isotopes (64Ge, 68Ge, 78Ge, 82Ge) because they can exhibit a pronounced competition 

between different configurations. The structures of these nuclei will be investigated by calculating 

the potential energy surfaces on       plane which can clearly show the shapes of nuclei. To 
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this end, the Ev8 program will be employed in this work [Ryssens, W. et al, 2014]. This report is 

organized as: firstly, background theory of spherical shell model and deformed shell model will be 

discussed. Then Hartree-Fock equations with Skyrme interaction are presented. In addition 

constrained-Hartree-Fock method is also discussed. Finally, we concluded the results with the 

descriptions of the shapes which are obtained from the calculated potential energy surfaces. 

 

Formalism 

I. Background Theory of Spherical and Deformed Shell Model 

 The shell model which is based on the Schrödinger equations for the single-particle levels 

can be seen as follows 
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where the central potential V(r) will be approximated by the phenomenological potential such as 

square well, the Woods-Saxon or harmonic oscillator potential. It was realized, however, that use 

of such a phenomenological potential alone cannot even reproduce the empirical shell closures 

without the inclusion of a spin-orbit coupling term, as shown by Mayer  
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where ŝ  and ˆ  are spin and angular momentum operators for a single nucleon. The degeneracy of 

oscillator level was partially removed with the introduction of this ˆ ˆ.s  term and the levels split up 

as j= ℓ ±1/2, where j is the total angular momentum.
 

 Since the potential for the shell model was spherically symmetric so that a new potential 

was needed for deformed nuclei. The Nilsson model, modified shell model, has been one of the 

most successful models that ever developed in nuclear theory. The modified harmonic-oscillator 

potential introduced by Nilsson et al., has been extensively employed in the interpolation of 

deformed nuclei [Zhang, J.Y. et al.,1989]. For axially symmetric deformed shapes, the potential 

extension along the nuclear z-axis is different from the two equal frequencies in the x and y-axes. 

The single-particle Hamiltonian in the form as follows 
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where 0  is the oscillator frequency for the spherical case related to each of the three dimensions, 

 controls the strength of the spin-orbit part of the potential, and  controls the strength of the 

correction term. The correction term,  2 2
N  

originally had the form of 2.
 
It served the 

purpose of suppressing (repressing) the energy of the higher lying shells; however, it was noted 

that this shift was too large for large N quantum numbers [Gustafson C. et al., 1968].  

For triaxial nuclear shapes, the Hamiltonian in term of anisotropic harmonic oscillator potential 

becomes 
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The triaxial shape associated with the harmonic oscillator potential can be seen as follows 

 



J. Myanmar Acad. Arts Sci. 2021 Vol. XIX. No.2 243 

  2 2 2 2 2 2

2
osc x y z

M
V x y z      (5) 

with x y z     and their relationships with the parameter    and the triaxiality angle    are  
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The parameter    specifies the degree of deformation and the parameter    describes 

the departure from axial symmetry.  

The deformation dependence of  0 ,    is determined from volume conservation of the 

ellipsoidal equipotential surfaces. For the static nuclei, it is needed only the one sector 0 60 .  

The nucleus is assumed to have prolate shape when 0  and oblate shape for 60  and the 

intermediate  values as the triaxial shape. The single-particle energies of the triaxial modified 

oscillator Hamiltonian are obtained from diagonalisation. 

With these definitions and the Nilsson Hamiltonian, the energy eigen states
  

zK Nn
, 

sometimes called Nilsson orbitals, can be extracted from solving the Schrödinger equation. 

 nil i i iH   
 

(9) 

where i represents the complete set of asymptotic quantum numbers used to specify Nilsson orbitals 
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 where K is the quantum number defines the overlap of the orbital with the deformed core, is the 

parity defined as    1 1
N

     , N is the oscillator quantum number,  nz is the number of 

oscillator quanta (number of nodes in the wave function), and Λ is the projection of the particle’s 

orbital angular momentum onto the symmetry axis. 
 

II. Hartree-Fock Equations with Skyrme Interaction 

 The full many-body Hamiltonian with a one-body kinetic energy term and a two-body force 

is obtained as follows 
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where the first term gives the kinetic energy operator and the second is the two-body force with 

the Coulomb interaction. Finally, the simplified expression for the Hatree-Fock equations becomes 
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 This equation is known as the Hartree-Fock equation. The first term is known as the Hartree 

potential (the local term). The latter non-local part is also called the Fock term.
  

In the following, the Skyrme approximation which can greatly reduce the number of integrations 

over single particle states will be discussed. 

In the Skyrme-Hartree-Fock approach, the total binding energy of the system is given by 

the sum of the kinetic, Coulomb energies and the Skyrme energy functional that models the 

effective interaction between nucleons [Bender M. et al., 2003]. The full Skyrme interaction can 

be shown in the form of the following equation, 

 Coulomb kin SkE E E E    . (13) 

The result of the Hartree-Fock equations with Skyrme interaction is  
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In constrained Hartree-Fock (CHF) method, a wave function such as 
 
is used to 

minimize the total energy under the constraint that a certain single-particle operator 
 
which has 

a fixed expectation value 

 

The method to solve this problem is adding to the Hamiltonian H in the condition  

Eq. (15) with Lagrange multiplier  with quadrupole operators 20Q  and 22Q which are constrained 

and can be seen as follows 
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 In this work, this method is used to calculate the energy surface as a function of collective 

parameters of  such as quadrupole deformation. 

 

Results and Discussion 

In this calculation, the potential energy surfaces (PES) for selected even-even germanium 

isotopes are studied to investigate whether it has axially deformed or not. The axial deformation 

can give either prolate or oblate shape; on the other hand, the non-axial deformation leads to the 

triaxial shape. There are many sets of the Skyrme parameters. The Sly4 parameter set is chosen for 

this calculation because this parameterization can give good agreement for the nuclear root mean 

square radii and binding energies. The zero-range density dependence pairing force will be used in 

this calculation. 

The relationship between the deformation parameter ( q ) and the triaxiality angle ( ) can 

be represented by 
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 The representation of deformation parameter 
m  which is related to the total mass of the 

moment as follows 
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 In this section, the calculated potential energy curves using constrained Hartree-Fock 

method are depicted in Fig. 1 for four selected germanium nuclei (64Ge, 68Ge, 78Ge and 82Ge).  

 

 

Figure 1 The potential energy curve versus quadruple deformation  2  
for  (a) 64Ge,  (b) 68Ge, 

(c) 78Ge and (d) 82Ge nuclei obtained with the Sly4 parameter set. 
 

 In this section, we first calculate the potential energy surfaces as a function of axial 

quadrupole deformation parameter. The calculated potential energy surfaces are depicted in Fig. 

1(a-d) for 64Ge, 68Ge, 78Ge and 82Ge nuclei. The nuclei having minimum energy located at the 

positive deformation parameter generally describes the prolate shape while the minimum energy 

with negative deformation parameter stands for the oblate shape. The ground state energy located 

at the origin is predicted to have the spherical shape. The shape coexistence is expected in 64Ge 

nucleus since the energy difference between oblate and prolate shape is less than 0.3 MeV. Shape 

evolution has been found from oblate to prolate and spherical in 68Ge, 78Ge and 82Ge nuclei. The 
68Ge nucleus is predicted to have minimum oblate configuration which can be seen in panel            

(b) whereas 78Ge to be prolate sides in panel (c), respectively. The semi-magic 82Ge nucleus shows 

the spherical shape in the last panel (d).  
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Figure 2 The potential energy surfaces versus quadruple deformation  2  
for (a) 64Ge, (b) 68Ge, 

(c) 78Ge and (d) 82Ge nuclei on    plane obtained with Sly4 parameter set. 

In order to investigate whether there is a deviation from axial symmetry in these nuclei, it 

is necessary to calculate the potential energy surfaces on    plane (See: Fig. 2(a)-(d)).In above 

figures, the contours join the points with the same energy and each contour line is separated by          

0.2 MeV. The triangles in these figures indicate the absolute minimum in the potential energy 

surfaces.  

As can be seen in Fig. 2(a), the PES for 64Ge shows its minimum energy at points which is 

deviating from axial symmetry (ie., the energy minimum does not occur at either 0    or             

). This fact suggests that this nucleus is expected to have triaxial nature. It has ground state 

energy of 543.29 MeV at and triaxiality angle 25  .The PES of 68Ge shows oblate 

minimum which is located at  on  axis having 589.18 MeV as shown in panel (b). 

On the contrary, the calculated results suggest that 78Ge nucleus can have more prolately deformed 

configuration rather than the soft-triaxial nature giving ground state energy of  

676.53 MeV with the quadrupole deformation nearly 0.17 (See: Fig. 2(c)). Finally, the potential 

energy surface (PES) for the semi-magic number 82Ge nucleus is showing spherical configuration 

at the origin with minimum energy of 702.55 MeV. 

The variation of single particle energy levels as a function of quadrupole deformation will 

be discussed in the next section.  

60  

2 0.18 

2 0.11  60  
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Figure 3 Schematic diagrams for single-particle orbitals along a path (β, γ) are depicted in the 

lower part of the figures. Combined plot of neutron single-particle energies  

(a) 64Ge, (b) 68Ge and (c) 78Ge nuclei plotted as a function of the deformation parameter. 

In order to get more inside on the resultant nuclear configurations, the single particle levels 

as a function of triaxial degrees of freedom is plotted in Fig. 3(a-c). It is known that the formation 

of deformed minima is favored by the occurrence of gaps or low single-particle level density 

around the highest occupied level.  In these figures, the neutron SPE for each selected nuclei are 

depicted as the combined plot. In the combined plot, the axially symmetric single-particle levels 

are plotted as a function of deformation parameter ( 2
 ) on the left and right-most panels. In the 

middle panel, neutron levels are plotted as functions of γ-deformation parameter for a fixed value 

( 2
 ) which corresponds to the ground state minimum. Solid blue curves with positive parity, short-

dotted red curves with negative parity, and dashed black curve corresponds to the Fermi level and 

red circles indicated the magic number. Figure 3 (a) is for 64Ge. In this figure, a pronounced gap 

appears near the Fermi Level which is found between the last occupied 2p3/2 and first unoccupied 

states 1f7/2 sub-shell. The appearance of gap in the triaxial region, 20 ֯< γ < 30֯ , favors the triaxial 

shape. The appreciable gap on the oblate axis near the Fermi level is found for 68Ge nucleus which 

is shown in panel (b). Meanwhile, 78Ge nucleus has the formation of the oblate and prolate neutron 

gaps which are found above the Fermi level but the largest gap is found on the prolate axis which 

favours the deep prolate configuration as can be seen in panel (c). 
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Summary and Conclusion 

 In this research work, we first calculate the potential energy curves as a function of 

quadrupole deformation parameter for four even-even germanium isotopes using the Sly4 

parameter set. The results suggest that start from shape coexistence in 64Ge nucleus, the shape 

evolution, ie., oblate-prolate-spherical shapes is found in 68Ge, 78Ge and semi-magic nucleus, 82Ge. 

In order to determine the existence of axial asymmetry in these nuclei, the potential energy 

surfaces of these nuclei are calculated on    plane. These results confirm oblate, prolate and 

spherical shapes for 68Ge, 78Ge and 82Ge nucleus, respectively. On the contrary, the energy 

minimum of 64Ge occurs at   25֯ ,ie., triaxial shape.  

Finally the single-particle energies on    plane for three deformed germanium nuclei 

are computed to examine the shapes of nuclei. It can also be concluded that the preference of 

ground state shape configurations is sensitive on the slope of last occupied single particle level. 
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